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Abstract

In this manuscript we discuss an approach to critically ap-
praising papers based on the results of laboratory animal ex-
periments. The roles of external and internal validity in
critically appraising the results of a paper are introduced.
The risk of bias domains used by the Cochrane Handbook
of Systematic Reviews of Interventions form the basis for as-
sessing internal validity. The bias domains discussed include
the selection bias, performance bias, outcome assessment
bias, attrition bias, and reporting bias. Further, an approach
to considering the role of chance in research findings is
discussed.
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Introduction

P reclinical assessment of interventions and a great deal
of pathogenic mechanism research is conducted using
animal models. Our understanding of theworking of bi-

ological systems, such as the immune and cardiovascular sys-
tems, is often based upon the results of research on animals.
Many pharmaceutical interventions in human health are first
tested in animal studies for efficacy and safety. As such, ani-
mal research is considered critical to the scientific endeavor.
However, how well animal studies achieve this goal is a sub-
ject of debate (van der Worp et al. 2010).
Although it frequently seems to researchers that publica-

tion is an endpoint, it is only an intermediary step in the sci-
entific process (Sargeant and O’Connor 2013). When authors
describe results, they often make the inference that the results
from the study animals (study population) represent the re-
sults expected from the population the study animals came

from (source population). Further, it is often inferred that
the results can be applied to populations other than the source
population (i.e., they can be applied to a target population). If
this inference is not made, the results are not useful to end-
users who wish to generalize the findings to reinforce con-
cepts already known, generate new hypotheses, develop
new research directions, or make policy based on the results.

What Is Critical Appraisal?

Critical appraisal is an essential part of the scientific process
designed to assess the validity of scientific findings. The unit
of assessment for critical appraisal is a single study, and the
approach to assessing a single study result is present here.
Critical appraisal is often conducted informally in a manner
such that the rationale for a judgment is not clear. Here we
seek to provide a transparent and systematic approach to
critical appraisal. The approach presented here, in particular
the use of risk domains, is borrowed from the Cochrane
Handbook of Systematic Reviews of Interventions and trans-
lated to animal studies in preclinical medicine (Higgins
et al. 2011).

Critical appraisal should be differentiated from an assess-
ment of comprehensive reporting. Comprehensive reporting
simply assesses if the study is reported in a manner that in-
cludes the important components of a study. There is substan-
tial evidence that reporting of preclinical studies is less than
comprehensive or has low reproducibility (Kilkenny et al.
2009; Prinz et al. 2011; Steward et al. 2012). Based on this
evidence, there have been calls for improved reporting
(Begley and Ellis 2012; Landis et al. 2012; van der Worp
and Macleod 2011). Further, there are several guidelines out-
lining aspects of study design, analysis, and reporting that
should be included in any research report; examples include
the ARRIVE Guidelines (Kilkenny et al. 2010) and the
“Guidance for the Description of Animal Research in Scien-
tific Publications” (National Research Council [US] Institute
for Laboratory Animal Research 2011). The target audience
for these checklists or guidelines is generally authors, and the
aim is to provide guidance on to how to present the study.
Many, but not all, of the items in these checklists are related
to enabling critical appraisal by the end-user, and for this rea-
son sometimes these checklists are used for critical appraisal.
This is inappropriate. Assessing comprehensive reporting re-
quires an assessment of presence or absence of an item,
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whereas critical appraisal requires judgment about validity.
For example, a study may report random allocation to treat-
ment group and therefore have a “yes” for such an item on
a checklist. However, despite random allocation to group,
there may be important baseline differences in characteristics
across treatments groups that suggest a high risk of bias.

Checklists for comprehensive reporting are generally made
for larger areas of science and are based on a study design
such as assessments of interventions and diagnostic test
evaluations (Ell 2003; O’Connor et al. 2010; The Lancet
2010). These checklists can be used by authors across a vari-
ety of disciplines, because the standards for reporting across
science are fairly standard. Critical appraisal, however, is
more narrow and topic specific. For example, most scientists
can determine if the study contains the list of outcomes as-
sessed; however, only content experts can judge if the ap-
proach to measurement is valid and unlikely to introduce
bias. This is why there are few “checklists” for critical ap-
praisal, and those that exist (like this one) recommend tailor-
ing the items to the topic. Although it is widely known what
information is needed to assess bias, this is not synonymous
with the presence of bias. The later is topic specific and re-
quires judgment.

After critical appraisal of individual papers, the next step is
to combine the results of many studies to reach a conclusion
about a body of work. Formal transparent approaches to this
combination are available but have infrequently been applied
to laboratory animal studies and are not reviewed here (Guyatt
et al. 2008, 2011; Johnson et al. 2014; Koustas et al. 2014;
Lam et al. 2014; Woodruff and Sutton 2014).

Organization of the Remainder of This Paper

This remainder of this manuscript is organized as follows.
First, we discuss the components of validity and introduce
the terms external validity, internal validity, bias, and bias do-
mains. We then discuss in greater detail the bias domains that
affect internal validity that might affect animal experiments.
For each domain of bias, we present a hypothetical example
from an animal experiment publication that demonstrates an
approach that would induce the bias. These examples are of-
ten extreme to make them easier to understand. Next, we pro-
vide a discussion of the rationale for why the risk domain
should be assessed when critically appraising a study. We
then discuss how to evaluate the role of random error when
conducting a critical appraisal. Finally, we provide comments
on how to reach a judgment about a paper based on the risk
domains and assessment of internal validity.

Throughout the paper, we provide guidance on where in
the manuscript a critical appraiser might expect to find the in-
formation needed to assess each bias domain. For this com-
ponent, we make reference to “The ARRIVE Guidelines for
Reporting Animal Research” (Kilkenny et al. 2010). Al-
though we make reference to the ARRIVE Guidelines check-
list items, end-users should be aware that not all authors
report in a manner consistent with the ARRIVE Guidelines.

There is good empirical evidence that reporting of laboratory
animal studies is not comprehensive (Banwell et al. 2009;
Crossley et al. 2008; Sena et al. 2007a, 2007b, 2010; van
der Worp et al. 2007; Wheble et al. 2008). End-users should
also be aware that even when authors do use the ARRIVE
Guidelines (or similar lists), the authors are not obliged to fol-
low the checklist item order. For example, there is no strict
requirement that the number of study animals be reported in
the first part of the results. Based on historical, journal, disci-
pline, or author’s preference, the methods and materials sec-
tion often contains this information. The reporting of the
information is what is important, not its order in the
manuscript.

The Components of Critical Appraisal

If the results of studies are to be inferred to represent those
from a source and target population, it is important to evaluate
the external validity and internal validity of the study. Exter-
nal validity refers to the extent to which the results can be in-
ferred to a target population. Internal validity refers to how the
study results represent the source population. Critical apprais-
al of a scientific report can evaluate both concepts.

External Validity

The concept of external validity is a difficult one in laboratory
animal studies, because the target population is unclear and
varies by end-user. By the very nature of using animals as
models for basic biological functions, there is the implication
that the results are in some way generalizable to other popu-
lations, such as humans. However, often with laboratory an-
imal studies, the next step in the scientific process is to
develop a new hypothesis to be tested in other animals, in
which case the target population of the laboratory animal
study would be laboratory animal populations. Further, there
is some empirical evidence in the literature suggesting that re-
sults from animal models do not generalize to “other” exter-
nal populations of interest (Perel et al. 2007; Pound et al.
2004; van der Worp et al. 2010). In this paper we assume
that the critical appraiser has already made the decision that
the study results, if internally valid, will apply to a target pop-
ulation. We do not provide guidelines for assessing external
validity other than to mention that information about external
validity often relates to the population studied.

Internal Validity

The most common aspect considered in critical appraisal is
internal validity. Internal validity relates to the question,
“Are the results of the study population representative of
the source population?” Threats to internal validity occur
due to bias. For example, consider an experiment that looks
at differences in behavior in mice subjected to 2 treatments (A
and B). In the experiment, the outcome is a binary variable
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(“yes” or “no”) that classifies each animal as having a charac-
teristic of interest or not. There are 10 mice per treatment
group. The data demonstrate that in treatment A, 8 of the 10
mice score a “yes,”while in treatment B, only 4 of the 10mice
score a “yes.” The comparison of the treatments can be sum-
marized using the ratio of the proportions with “yes” out-
comes in treatment A to treatment B (i.e., 8/10 ÷ 4/10 = 2).
From these results, we would infer that treatment A doubles
the risk of a “yes” response. It would also be reasonable to
summarize the comparison of the treatments by calculating
the difference in risk of the “yes” response (i.e., 80%− 40%
= 40%). If a “yes” response is favorable (e.g., a “yes” out-
come indicates better or improved cognitive function), treat-
ment A may be considered a candidate therapy to be moved
forward to the next stage of testing. If a “yes” response is not
favorable (e.g., a “yes” outcome indicates lower or dimin-
ished cognitive function), treatment A may be considered a
risk factor or potential cause of the behavior, and further re-
search may evaluate the causal mechanisms. The question the
critical appraiser must ask is, “Did the observed ratio or differ-
ence arise because of the treatments, systematic bias, or impre-
cision?” Alternatively, internal validity can be framed as the
question, “What is the potential for factors other than the var-
iable of interest to have influenced the results of the study?”
For the remainder of this paper, we will discuss a system-

atic approach to critically appraising the internal validity of
study findings. We will discuss sources of systematic error
(i.e., bias) as well as the impact of imprecision or random
error on the results.

Bias

Bias refers to a systematic deviation from the true state of na-
ture (i.e., the association observed in the study population dif-
fers from the true association in the source population). In
comparative research, we aim to measure the effect of an in-
tervention among the study groups (e.g., how average liver
weight differs across 3 treatments). However, the observed
difference in the study population may differ from the true re-
sult in the source population for 2 reasons: bias or impreci-
sion. Imprecision relates to random error and is discussed at
the end of the manuscript. Bias is caused by systematic errors.
Systematic errors are a function of how the study was con-
ducted and, unlike random error, cannot be resolved by in-
creasing the sample size. For example, if researchers aim to
compare the weights of 2 study groups, they may obtain an
imprecise estimate of the difference in weights, because
only 5 animals per group were studied. Simply increasing
the sample size can decrease the extent of imprecision. How-
ever, if the researchers use a scale that is systematically incor-
rect (e.g., one that always underestimates weight), increasing
the sample size will not decrease this systematic error.
The nomenclature of systematic errors is only moderately

consistent across disciplines and may therefore create some
confusion. In epidemiology, the categories of systematic error
are usually referred to as selection bias, confounding bias,
and information bias (Dohoo et al. 2010). However, in the

clinical trial literature, the terminology used for categorizing
systematic errors is selection bias, performance bias, detec-
tion bias, attrition bias, and reporting bias (Higgins et al.
2011). In trials, selection bias may create a confounding
bias. In this manuscript, we will use the latter terms for con-
sistency with the risk-of-bias tool developed by the Cochrane
Collaboration (Higgins et al. 2011). The rationale for using
the risk-of-bias domains recommended by the Cochrane Col-
laboration is that the biases associated with animal research
are consistent with those associated with human health and
animal experiments more closely represent controlled trials
that observational studies. Further, there are communication
advantages to using of a common terminology (Higgins
et al. 2011). For example, failure to blind leads to the same
concerns about outcome assessment bias in human-based
research and animal research.

Risk-of-Bias Domains

Selection Bias

Mice in the study were allocated to treatment group by
sex; treatment A consisted of female mice and treatment
B consisted of male mice:

Example 1

Selection bias occurs when there are systematic differences in
baseline characteristics between the treatment groups being
compared (Higgins et al. 2011). In laboratory animal studies,
selection bias occurs when nonrandom factors influence the
allocation of animals to treatment groups (Starks et al.
2009). In example 1, it is possible that the sex of the group
may account for the observed difference in the group out-
comes, rather than the treatment. Although extreme, this is
an example of selection bias.

When critically appraising a paper for evidence of selection
bias, end-users should ask, “Are the groups comparable such
that an observed difference is likely attributable to the treatment
rather than a confounder?” A confounder is a factor that is re-
lated to the outcome in the source population independent of
the treatments and related to the treatments in the study popu-
lation. A common potential confounder in animal studies is
sex. If the sex of animals is unevenly distributed across the treat-
ment groups and sex has an effect on the outcome, then the ob-
served difference in treatments may be simply a sex effect.

Ideally, we would like to measure the effect of an interven-
tion by observing the effects of treatment A and treatment B at
exactly the same time on exactly the same animals; this is re-
ferred to as the counterfactual. In this situation, the observed
difference in the outcomewould be attributable to only the dif-
ference in treatment. Of course, the counterfactual cannot be
observed. In lieu of being able to observe the counterfactual,
researchers try to create intervention groups that are exchange-
able (Greenland and Robins 1986; Lindley and Novak 1981;
Pearl 2009). For example, imagine a hypothetical exchange
of the 2 treatment groups; if the treated group becomes untreat-
ed, and vice versa, and the effect of the treatment remains the

Volume 55, Number 3, doi: 10.1093/ilar/ilu038 2014 407

D
ow

nloaded from
 https://academ

ic.oup.com
/ilarjournal/article/55/3/405/644697 by guest on 09 April 2024



same, then the groups are exchangeable. Exchangeability will
arise if there is balance across the groups for all the factors that
may affect the outcome, so that we achieve close to the coun-
terfactual comparison. Any difference in the outcome observed
between the treatment groups can be attributed to the difference
in treatment. Therefore, when critically appraising a study, end-
users should look for the use of design tools that would create
exchangeable groups.

Randomization is the best known of the design tools to bal-
ance the distribution of confounders across the intervention
groups. Randomization of study subjects to intervention
groups means that the differences observed in the makeup
of groups are due to chance (“random error”). Randomization
is the only design tool that can address known and unknown
confounders. As such, it is an important tool and should be
used in all studies. Numerous studies have demonstrated
that the results of randomized and nonrandomized studies dif-
fer, suggesting randomization reduces bias (Burns and
O’Connor 2008; Jerndal et al. 2010; Pedder et al. 2014;
Sargeant et al. 2009; Schulz et al. 1995). Thus, randomization
serves as an indicator of a reduced risk of bias. However, ran-
domization does not guarantee the balancing of confounders
and, therefore, does not guarantee the absence of selection
bias as a cause of observed group differences. The reporting
of randomization should not be treated as synonymous with
the absence of selection bias.

The ability of randomization to balance both known and
unknown confounders decreases as the study becomes small-
er. This is an important point. Because of the importance of
sample size in the efficacy of randomization, even in random-
ized studies, end-users need to consider the size of the groups
to determine the potential for randomization to balance
known and unknown confounders. By and large, laboratory
animal studies are very small, so this is relevant to critical ap-
praisal of laboratory animal studies. For example, consider an
experiment with 20 animals—10 males and 10 females. If sex
is associated with the outcome in the source population, the
researcher would want to ensure that there was an even num-
ber of males and females in each group to balance the sex ef-
fect. If the researchers relied solely on simple random
allocation, it is possible that the sex of the animals would
not be evenly distributed across the groups. This concept
can be illustrated with the idea of a coin toss—if a coin is
tossed 20 times, 10 heads would not be guaranteed despite
the use of a random method. As shown in Figure 1, the
most common result is to have 10 heads; however, other re-
sults are possible. In Figure 2, it can be seen that the potential
for uneven groups increases with decreasing sample size. For
example, when 6 coin tosses are made, it is quite common for
only 1 head to occur (around 10% of the time), rather than the
expected 3 heads from 6 tosses. As the sample size increases,
the probability of extreme unbalance become rarer, and the
50% heads result is observed with greater frequency. The
same concept can be applied to small experiments, which
laboratory animal studies often are.

Given the potential for study size to affect the efficacy of
simple randomization to control selection bias, critical

appraisers should look for the use of more complex approach-
es to random allocation. The use of such tools may increase
the confidence that the risk of selection bias is low. It is pos-
sible to employ restricted randomization to deliberately force
the even distribution of known confounders and increase the
potential for exchangeability. Block and stratified randomiza-
tion can be used, although the researcher may not use these
exact terms, which are more common in clinical trials. In
stratified randomization, the researchers could stratify animals
by sex, and randomly allocate within each sex, ensuring that
sex was evenly distributed across treatment groups. If a con-
tinuous variable is a potential confounder, the researchers
may use block randomization. For example, 20 piglets might
be organized by weight from heaviest to lightest, creating

Figure 1 Sampling distribution of number of head from repeated
tosses of 20 fair coins.

Figure 2 Sampling distribution of number of head from repeated
tosses of 6 fair coins.
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5 blocks of 4 animals each. Then all possible allocation se-
quences of 2 treatments (labeled A and B) for a group of 4
can be created (i.e., AABB, ABBA, ABAB, BABA,
BBAA, BAAB) (Altman and Bland 1999). The researcher
may randomly allocate a sequence to each block. Such an ap-
proach aims to balance the distribution of weight across the
treatment groups and reduce selection bias and confounding.
Other designs tools also exist to distribute confounders

across intervention groups. The most commonly used design
tool in laboratory animal studies is restriction of the study
population to exclude a factor that is known to or would likely
affect the outcome. In our example, restriction would corre-
spond to only conducting the experiment in male mice or
only conducting the study in female mice. Restriction is
such a fundamental approach to controlling for confounding
in laboratory animal studies that many researchers may not
recognize it as a design tool. Laboratory animal studies rou-
tinely are restricted to a source population of the same age and
genetic lines, and by doing so, important known (or suspect-
ed) confounders are removed. It is also important to recognize
that the use of restriction as a design tool means that variation
is often lower in laboratory animal studies compared with hu-
man randomized controlled trials that are often designed to
include a diverse group of people. Because of this lower var-
iation, restriction may in part explain why large sample sizes
are often not needed in laboratory animal studies to observe
differences. Unfortunately, restriction also has the impact of
reducing external validity. Of note, the National Institutes
of Health recently have been discouraging restriction of stud-
ies to one sex of animal (Clayton and Collins 2014).
Finally, even in studies that employ all of the tools recom-

mended to increase the exchangeability of groups and reduce
selection bias, groups may still be uneven. This should be eval-
uated by looking at the baseline characteristics of the groups,
frequently reported in the initial portion of the results section.

Where Might We Expect Information About
Selection Bias to Be in the Report?

When assessing the potential for selection bias, the critical
appraiser needs to look at the eligibility criteria for the study
subjects, the approach to allocation of study subjects to treat-
ment groups, the sample size, and the baseline information
for study subjects in each of the treatment groups. In the AR-
RIVE Guidelines, the information that would enable the end-
user to judge the balance of known factors between the
groups is described in Items 6, 8, 10, and 11. The information
requested in these items will enable the end-user to know the
study population, housing, and demographics and the base-
line data of animals in each treatment group.

Performance Bias

Mice in the infected group were housed in the newer B3
isolation facility in individual cages. However, as
there was no biological need and to reduce costs, the un-

treated control mice were housed in two group cages in the
older Bl2 facility:

Example 2

Performance bias occurs when there are systematic differenc-
es between groups in the care that is provided, or in exposure
to factors other than the treatment (Higgins et al. 2011).When
critically appraising papers of laboratory animal studies, end-
users should ask, “Was the approach to husbandry the same
for all treatment groups and was caregiving done without
knowledge of the treatment group?” If the answer is no,
then the potential for performance bias may be high.

In example 2, it is clear that the management of the animals
is different between the treatment groups and this could influ-
ence the performance of the animals. In such a scenario, the
potential is high for differences in treatment group outcomes
to be affected by the different approaches to housing. Obvi-
ously, there are more subtle ways in which animals may be
managed that could still contribute to differences in the per-
formance of the groups. In animal studies, performance bias
may arise in many ways. First, as in the example, the animals
may be managed differently by design. Location in facilities,
group sizes, and diet are all factors that should be the same
across treatment groups. Secondly, the animals may be man-
aged differently by nonblinded caregivers. Blinding of the
caregiver is important in all animal studies. Because there is
a daily interaction between caregivers and animals, it is im-
portant that caregivers are not aware of the treatment groups,
so they do not inadvertently manage one group differently.
Blinding of caregivers to the treatment group should not be
confused with blinding of outcome assessment, which is re-
lated to the potential for detection bias (see below). Blinding
of the caregiver to treatment group can be difficult for studies
that use only 2 cages (i.e., one for each treatment). Such stud-
ies theoretically have a high potential for performance bias, if
a caregiver feels they “know” the treatment allocation. This is
an argument for having more than one cage per treatment.

Where Might We Expect Information About Performance
Bias to Be in the Report?

To assess performance bias, the critical appraiser needs to
know about the management of the animals, the outcomes
of interest, and the approach to blinding of caregivers as to
which treatment groups the animals (or animal cages) belong.
In the ARRIVE Guidelines, the information that would en-
able the end-user to judge performance bias is described in
Items 6, 9, and 13.

Detection Bias

The cages of the mice in the group treated with the new
fantastic drug were labeled with the term “fantastic
drug” and the cages of the mice that did not received
the treatment were labeled “old drug” Each day the staff
feeding the mice were asked to described how active the
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micewhere on a scale of 1 to 5, with 1 being not active and
5 being very active:

Example 3

Detection bias can occur when there are systematic differenc-
es between treatment groups in the way in which the outcome
is assessed (Higgins et al. 2011). When critically appraising a
paper, end-users should ask, “Was the approach to assessing
the outcomes the same in both groups and done without
knowledge of the group?” If the answer is no, the potential
for detection bias may be high.

In example 3, it is clear that the people measuring the out-
come are also aware of the treatment groups of the mice. The
caregivers may have the expectation that the mice receiving
the new treatment will perform better and inadvertently over-
estimate the activity levels of these mice. The observed differ-
ences in the outcomes between groups could be due to
differential measurement of the outcome between the 2
groups rather than treatment. This approach clearly has the
potential to introduce detection bias.

The most common tool used to prevent detection bias is
blinding of the individuals assessing the outcome as to which
animals (or cages) belong to which treatment groups. Empir-
ical evidence shows that failure to blind the outcome assessor
in laboratory animal studies is associated with more favorable
outcomes (Jerndal et al. 2010; Minnerup et al. 2010). Ideally,
all studies should blind outcome assessment; however, the
risk of bias due to failure to blind may be high or low depend-
ing upon the outcome. For example, when the outcome is
death, the risk of bias due to lack of blinding may be very
low, as the outcome is extremely objective. Other outcomes
that may seem objective and quantifiable, such as cells per
field, may be prone to bias if the reader is allowed to pick a
“suitable slide field.” Risk of bias should be judged for every
outcome reported and the judgment reached may differ
among different outcomes within the same experiment. As-
sessment of the risk of detection bias for a particular outcome
often requires content expertise.

When blinding is used, it is important not only that the out-
come assessor not know what specific treatment an animal
has received, but also what treatment group an animal is in
(e.g., group labeled “A” or group labeled “B”), even if specif-
ic treatments are not named. This is important, because know-
ing the outcome for one animal of a group may influence the
interpretation of the outcome for the next animal in the same
group. Even if a bias does not exist towards a particular out-
come, knowing the treatment group may inadvertently reduce
group-level variation. For example, imagine the scenario
where the first animal is known to have received treatment
A and has severe lung consolidation. The pathologist may
be more attuned to lung congestion in the next animal in
group A. Similarly, the pathologist may be more inclined to
call the pathology severe, if the last animal in group Awas
known to have severe pathology. This bias would make
groups more consistent, reducing heterogeneity, and may de-
crease the p value as the true extent of variation is understated.

Thus, bias can be introduced, even without knowing exactly
what treatment A is.

Where Might We Expect Information About Performance
Bias to Be in the Report?

To assess detection bias, the critical appraiser needs to know
about the management of the animals, including any ap-
proaches to identification, the measurement of the outcomes
of interest, and the approach to blinding of the outcome asses-
sor. In the ARRIVE guidelines, the information that would
enable the end-user to determine the likelihood that the out-
come was differentially assessed is described in Items 6, 9,
and 13.

Attrition Bias

“Twenty-four animals were allocated to 2 treatment
groups (12 in each group). The average weight (±SD) of
the mice in treatment Awas 2.5 g ± 0.3 (n = 7) and the av-
erage weight in treatment B was 2.4 g ± 0.3 (n = 12).”

Example 4

Attrition bias refers to systematic differences in withdrawals
from treatment groups (Higgins et al. 2011). When critically
appraising a paper, end-users should ask, “Was the loss of an-
imals from the groups minimal and unrelated to the treatment
groups?” If the answer is no, the potential for bias due to at-
trition may be high. The impact of attrition is that the outcome
is not observed for all animals. In the example above, it ap-
pears that some animals have not completed the study. If
the outcome of those missing animals was systematically dif-
ferent across the groups, then bias can occur. For example,
imagine a study that measured weight gain over a 50-day pe-
riod as an outcome, as in example 4. The study also had
weight loss as a withdrawal criterion (e.g., if an animal loses
a certain amount of weight they must be withdrawn from the
study and euthanized). Further, consider the impact of these
criteria, if the effect of treatment A is to create a bimodal dis-
tribution of diseases (i.e., animals within the group are either
severely affected or show no clinical signs), and if the effect
of treatment B is to create a wide spectrum of disease, from
severe to mild to no clinical signs. In such a scenario, severely
affected animals in treatment A are more likely to be removed
from the study, leaving only healthy animals. The unobserved
animals would have had very low weight gain and, if includ-
ed, would have reduced the treatment A average weight gain.
However, because only the healthy animals are actually ob-
served to the end of the study, the average weight gain ob-
served in treatment A is higher than the true unobserved
average, and the observed difference in group averages is
due to attrition bias rather than a true treatment effect.
Attrition bias is a major issue in human studies where attri-

tion may be voluntary (participants choose to leave the study)
or nonvoluntary (e.g., participants die prior to the end of the
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study). In human clinical trials, participants can leave the
study if they choose. When they leave, the reason for leaving
often is not known. If the reason for leaving is associated with
the treatment, a bias can occur. This almost certainly cannot
happen in laboratory animal studies. Therefore the potential
for voluntary attrition bias in laboratory animal studies is al-
most nonexistent; however, nonvoluntary attrition can occur
if animals die or are withdrawn because they met a priori cri-
teria for removal prior to observing the outcome. Because
nonvoluntary attrition can inadvertently introduce bias, au-
thors are encouraged to report information about attrition
for each study group. Authors should also consider including
outcomes that will be unaffected by attrition; in the hypothet-
ical example about weight loss, comparing survival time in
each group would not be affected by attrition bias. However,
often outcomes cannot be designed to address attrition bias
and other approaches must be employed. Some design or stat-
istical approaches to minimizing the impact of attrition can be
used, such as using the last observed outcome or imputing the
missing data. If these approaches are reported in a manuscript,
the assessment of their validity often requires a statistician be
consulted.

Where Might We Expect Information About Performance
Bias to Be in the Report?

The ARRIVE Guidelines propose that authors report the
number of animals enrolled in each group, the number of an-
imals completing the study, and the number included in the
analysis. It is also possible that authors will report their ap-
proach to dealing with missing data including any imputation
approaches in the statistical analysis section of the manuscript
(ARRIVE checklist items 13, 14, and 15).

Reporting Bias

“Outcomes measured were weight of the liver, kidney,
brain, spleen and lungs.…

Results: The average weight of the kidneys in treatment A
was 1.5 g (SD= 0.5, n = 12) and the averageweight in treat-
ment B was 0.9 g (SD= 0.4, n = 12) (mean difference = 0.6,
95% CI = 0.2 to 0.98, p value = 0.003867). The conclusion
reached was…”

Example 5

In example 5, we see that although the authors reported as-
sessing 5 outcomes, the results of only 1 are reported. This
is an example of incomplete reporting. When critically ap-
praising a paper, end-users should ask, “Were the results of
all outcome variables assessed reported completely?” If the
answer is no, the potential for reporting bias may be high. Of-
ten incomplete reporting can only be theoretically assessed. If
the authors had omitted reference to the lungs in the methods
and materials, the reader would have no evidence about the
inclusivity of the outcomes reported. Reporting bias refers
to the absence of important results from the study (Higgins

et al. 2011). The concept of reporting bias is sometimes dif-
ficult to conceptualize, when critically appraising a single
study. It is likely more accurate to say that studies fail to report
some results and that the actual bias occurs in subsequent re-
views that use studies that fail to report all results. The failure
to report something makes it impossible to ask the question,
“Are there other explanations for the results observed?” Re-
porting bias is relevant when the aim of the critical appraisal
exercise is to combine and summarize a larger body of work.
If there is evidence of reporting bias and some results are
missing, the results of the summary will be biased because
of the absence of some studies. At the individual paper level,
reporting bias may hide multiplicity issues and, as such, affect
the ability of the critical appraiser to know the role of chance
in the findings (see the discussion of multiplicity below).

Where Might We Expect Information About Reporting
Bias to Be in the Report?

As shown in example 5, evidence of reporting bias is often
found by comparing the outcomes reported (ARRIVE check-
list item 16) and the statistical methods proposed (ARRIVE
checklist item 13) and the variables assessed (ARRIVE
checklist item 12). It is also possible to compare the outcomes
studied in the report with those proposed in the original study
proposal or protocol, if available. Finally, some journals now
suggest the inclusion of a statement of comprehensive report-
ing (Altman and Moher 2013), and the inclusion of such a
statement should suggest that the risk of reporting bias is
low. An example of such a statement modified for animal
studies might be, “The authors affirm that this manuscript is
an honest, accurate, and transparent account of the study be-
ing reported; that no important aspects of the study have been
omitted; and that any discrepancies from the review as
planned have been documented and explained. The authors
have indicated where results from these study animals are re-
ported in other publications, and have included citations for
these publications where relevant.”

Random Error

“Mortality in treatment A was 90% (9 of 10) and 10% in
treatment B (1 of 10) (Fisher’s exact p-value = 0.001093).”

Example 6

“Mortality in treatment Awas 90% (9 of 10) and 10% in
treatment B (1 of 10) (Fisher’s exact p-value < 0.05).”

Example 7

Apart from systematic sources of error, random error may be
another explanation for observed differences between group
outcomes. When critically appraising a paper, end-users
should ask, “Is there a low probability that chance played a
role in the observed difference?” The end-user should use
the p value provided by the original study to assess this
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question and should report the p value threshold used by the
end-user as the basis for considering an outcome rare enough
to reject the null hypothesis. A small p value suggests a low
probability of chance, a large p value suggests a high proba-
bility of chance. It is known from sampling distribution the-
ory that if we were to obtain multiple random samples from a
subset of individuals from the same population and measure a
population parameter (e.g., mean weight), we would not ob-
tain identical means for each sample, even though each sam-
ple came from the same source population. “Random error”
means that the difference observed is simply a function of the
random sampling of 2 groups of individuals from the same
population. The p value of a test statistic under the null hy-
pothesis is the approach used to express the probability that
the observed difference in the outcomes between groups is
a function of random error. For the data provided above, after
performing a Fisher’s exact test to assess treatment group dif-
ferences, we obtain a p value of 0.00109. A chi-square test
would not be appropriate for this dataset, because the sample
size is too small. This p value suggests that 0.109% of the
time with repeated samplings, we would expect to obtain
the same (or greater) observed difference in proportions in
mortality between 2 groups of 10 randomly drawn individuals
from the same population. In example 6, we would conclude
that the chances are small, because the p value suggests that
the observed difference of 90% between groups would be ob-
served only rarely.

Failure of authors to report the exact p value prevents a crit-
ical appraiser from evaluating the probability that random er-
ror is the reason for the observed treatment effect. Often
authors simply report that the finding was “statistically signif-
icant,” meaning that the probability that the observed differ-
ence arose from random error is≤5% (example 7). The ability
to assess the role of random error would be substantially im-
proved if one could differentiate between a p value of 0.05 or
0.0001. For example, a p value of 0.05 implies that something
occurs 1 in 20 occasions. In reality, this is not a very rare out-
come, when we consider that it is quite common to roll 2 sixes
with a pair of dice, an event with a probability of 1 in 36. The
magnitude of the p value should not be used to interpret the
size of the treatment effect (i.e., a small p value does to equate
to a large difference, just a rare difference). This is a common
misinterpretation. Indeed, in laboratory animal studies, most
treatment effects are quite large, as the studies are small and
only have the statistical power to detect large differences. One
issue to be aware of is that within a test such as an ANOVA it
is possible to adjust for the p value of pairwise comparison
using statistical methods. Examples of approaches include
calculation of the least significant difference, a Bonferonni
adjustment, a Tukey adjustment , Tukey-Kramer adjustment,
and numerous possible approaches (Ramsey and Schafer
2013). However, such approaches only adjust the p value
for pairwise comparisons conducted within the ANOVA test
and do not account for the conduct of multiple ANOVA tests.

A 95% confidence interval conveys to the end-user how pre-
cisely the estimate of the treatment effect is known. However,
it can also be used to provide indirect information about ran-

dom error. If the 95% confidence interval includes the null val-
ue (1 for ratios and 0 for differences), then the p value is >0.05.
For example, if a study reports a risk ratio of 2 and the 95%
confidence interval for the ratio is from 0.386 to 2.44, the p
value must be >0.05. However, sometimes it is more difficult
to determine the exact p value from a confidence interval, be-
cause the degrees of freedom are not reported, and in those sit-
uations, the exact role of chance might only be inferred rather
than exactly calculated.

Multiple Testing

“Statistical Methods. The study had 3 treatment groups,
and we measured wet weights, dry weights, and surface
area for the liver, spleen, kidney, heart, lungs, stomach,
and brain. We compared the average outcomes across
all possible pairwise comparisons of the 3 groups (i.e.,
group 1 vs. group 2, group 2 vs. group 3, and group 1
vs. 3) using t-tests. We used a p value of 0.05 to assess stat-
istical significance.
Results. The wet weights, dry weights, and surface area

of liver, spleen, kidney, heart, lungs, stomach, and brain
were not statistically different across any of the pairwise
treatment group comparisons with the exception of a stat-
istically significant difference in the surface area of the
spleen between Group 1 and Group 3 (p < 0.05).”

Example 8

Another factor to evaluate related to random error is multi-
plicity. It is common, by convention, to accept that a compar-
ison is “statistically significant” if the p value is < 0.05. The
0.05 corresponds to a type I error (i.e., the probability that the
observed difference or larger would occur in a population
where the means were the same is 5% or less). However,
when multiple comparisons are conducted within the same
experiment, although the probability of a type I error for
each comparison is 5%, the probability that at least one com-
parison was significant due to random error is considerably
higher.
Authors should consider when multiple outcomes are as-

sessed that differences may have arisen by chance. As well,
across the entire study, the more tests conducted, the more op-
portunity there is for random error. In human clinical trials,
studies are often designed to assess a limited number of out-
comes, reducing the potential for this multiplicity of random
errors. However, it is unclear if limiting the number of out-
comes in laboratory animal studies is desirable. Laboratory
animal studies are meant to provide preliminary proof of con-
cept or data on treatment safety and thus play a critical role in
discovery and hypothesis generation (Henderson et al. 2013).
They also often end in euthanasia of the animals. Thus, a
large number of outcomes may be justified. For discovery
studies, we believe that it is preferable that authors report
all outcomes assessed with group-level and summary-level
data (including measures of precision) and authors consider
not conducting inferential statistics on all outcomes (e.g.,
consider testing only those outcomes for which the study
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Table 1 Sample form that might be used to document the approach to critical appraisal of a laboratory animal study designed to compare outcomes
among groups

Area to assess Question to ask Possible responses

Design tools associated with

control or reduction of risk

ARRIVE guideline

items

External validity “If the study was conducted in a

manner that suggests little internal

bias, will it be useful for the ‘next

step’ because the population is

relevant to ‘the next step?’”

No—don’t assess

Yes—continue to assess internal

validity

Inclusion criteria for relevant

populations, housing, and

intervention used

7, 8, and 9

Internal validity (using risk-of-bias domains from Higgins et al. 2011)

Selection bias “Are the groups comparable such

that an observed difference is likely

attributable to the treatment rather

than a confounder?”

Yes—low ROB

Unclear—unclear ROB

No—high ROB

Blinded allocation to group,

restriction, randomization,

restricted randomization

6, 8, 10, and 11

Performance bias “Was the approach to husbandry the

same for all treatment groups and

was caregiving done without

knowledge of the treatment

group?”

Yes—low ROB

Unclear—unclear ROB

No—high ROB

Blinding of caregivers, use of multiple

cages per treatment

6, 9, and 13

Detection bias “Was the approach to assessing the

outcomes the same in both groups

and done without knowledge of the

group?”

Yes—low ROB

Unclear—unclear ROB

No—high ROB

Blinding of outcome assessors, use

of repeatable and objective

outcome measures

6, 9, and 13

Attrition bias “Was the loss of animals from the

groups minimal and unrelated to

the treatment groups?”

Yes—low ROB

Unclear—unclear ROB

No—high ROB

Minimization of loss to follow-up and

complete reporting of loss to

follow-up for each treatment group

13 to 15

Reporting bias “Were the results of all outcome

variables assessed reported

completely?”

Yes—low ROB

Unclear—unclear ROB

No—high ROB

Comprehensive reporting and a

well-designed study protocol

12 to 17

Random error

Test-level error “Is there a low probability that chance

played a role in the observed

difference?”

Yes—low risk of random error

in the test

Unclear—unclear risk of random

error in the test

No—high risk of random error

in the test

The exact p-value and the 95%

confidence interval

10, 13, and 16

Continued
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was specifically designed—i.e., the basis for the power calcu-
lation). For the critical appraiser, if reporting suggests a large
number of outcomes were tested, the role of random chance in
the study increases. This is the area where reporting bias af-
fects the critical appraiser. If the authors do not report all out-
comes assessed, the person appraising the study cannot
accurately gauge the role of random error due to multiplic-
ity in the study results. For example, if a researcher tests
and publishes 20 outcomes and only one is statistically
significant, a mindful reader could recognize the likelihood
of false statistical significance and adjust for this. However,
if instead the researcher publishes the 1 significant outcome
with only 4 nonsignificant outcomes, 20% of outcomes
appear significant, and the potential for the reader to re-
cognize the random nature of the significant findings is
eliminated.

How to Reach a Conclusion about a Paper

We propose that for individual papers, critical appraisers first
assess external validity (i.e., if the study is judged to be inter-
nally valid, then the result would be useful to apply to the next
step in the scientific process). Only then assess internal valid-
ity. To assess internal validity, for each of the risk domains,
we would propose following the approach proposed by the
Cochrane Collaboration (Higgins et al. 2011). For each do-
main, assess whether the risk of bias is high, low, or unclear.
The unclear response usually arises if there is a lack of com-
prehensive reporting. If reporting is comprehensive, a judg-
ment of high or low risk should be made and the rationale
indicated. After assessing each bias domain and the potential
for random error, evaluate the findings together. The final
judgment can be recorded as valid or invalid. We present a
template table (Table 1) that might be used for a critical ap-
praisal exercise. We also present an example of a completed
table (Table 2) to illustrate how the rationale can be included
to enhance transparency.
Tempting as it may be to create a score or a cut-off, this ap-

proach should not be used (Higgins et al. 2011). Scores and
cut-points have been discredited in favor of making a judg-
ment about the validity of study findings (likely valid or likely
invalid) and using risk-of-bias assessments to support that
judgment. This avoids subjective selection of weightings
for different bias domains and also allows the critical apprais-
er to judge the risk of bias for each domain in the specific con-
text of the study or outcome. It is not unreasonable for the
reviewer to decide that on the basis of a single flaw that the
results are likely not internally valid.
We believe that recording the reasoning behind an assess-

ment will be helpful for defending decisions about validity.
Decisions about validity of results have been made for a
very long time and knowledge of risk-of-bias domains has
long been known. The 2 novel aspects to critical appraisal in-
corporated here are the formal partitioning of the risk-of-bias
domains and the transparent documentation of the conclu-
sions reached about these domains.Ta
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Table 2 Completed critical appraisal form for a hypothetical study using examples in the text

Area to assess Question to ask Possible responses Rationale

External validity “If the study was conducted in a manner that

suggests little internal bias, will it be useful for the

‘next step’ because the population is relevant to

‘the next step?’”

Yes Population, housing, and intervention are relevant

to next step in the scientific process.

Internal validity

Selection bias “Are the groups comparable such that an observed

difference is likely attributable to the treatment

rather than a confounder?”

No—high ROB Example 1: Animals are assigned by sex and sex

may be a confounder, if related to the outcome.

Performance bias “Was the approach to husbandry the same for all

treatment groups and was caregiving done without

knowledge of the treatment group?”

No—high ROB Example 2: The treatment groups are housed very

differently and, therefore, the housing rather than

the treatment could be the cause of the observed

differences.

Detection bias “Was the approach to assessing the outcomes the

same in both groups and done without knowledge

of the group?”

No—high ROB Example 3: The outcome assessors are clearly

aware of the treatment assignment and the

approach to measurement is highly subjective, so

these factors could be the cause of the observed

differences between groups rather than the

treatment.

Attrition bias “Was the loss of animals from the groupsminimal and

unrelated to the treatment groups?”

No—high ROB Example 4: Some animals are missing from one

group and no explanation is provided.

Reporting bias “Were the results of all outcome variables assessed

reported completely?”

Unclear—unclear ROB Example 5: Several measured outcome are not

reported; this suggests incomplete reporting and

may indicate a non-significant finding.

Random error

Test level “Is there a low probability that chance played a role in

the observed difference?”

Yes—low risk of random error Example 6: The p-value is very small suggesting the

observed difference is rare under the null

hypothesis.

Study level “Did the authors limit the number of hypothesis tests

conducted to those the study was designed

(powered) to assess?”

No—high risk of random error Example 8: The authors appear to have conducted

9 × 7 = 63 hypothesis tests without adjustment for

multiplicity, and only found one significant

outcome. It is unclear if this is a primary (important)

outcome.

Conclusion Low internal validity

Abbreviation: ROB, risk of bias.
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Conclusion

The critical appraisal of studies is a fundamental aspect of
the scientific process. Here we propose applying the
“risk-of-bias” domains used by the Cochrane Collaboration
to the critical appraisal of laboratory animal studies. Critical
appraisal requires content expertise and making judgments
cannot be avoided. However, transparency in the criteria as-
sessed and conclusions reached can make the process of crit-
ical appraisal easier to conduct, more deliberate, and perhaps
more reproducible.
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